9 research outputs found

    Atmosphere characterisation with SAR interferometry

    Get PDF
    The contribution of the atmosphere in SAR interferometry is not completely known. Therefore, the goal of the project is to characterise the atmosphere, i.e., to study the way it relates to interferograms. The analysis of the atmospheric parameters that have an inuence on interferometry will cause a better understanding of the atmosphere. One of the objectives is to determine the relationship between interferograms and the refractivity calculated on the Earth's surface, to evaluate whether variations or changes of refractivity involve a change in the interferograms. This work also deals with the analysis of the atmospheric distance of correlation. This distance indicates the maximum separation between two correlated points of the atmosphere. SAR di erential interferometry uses this parameter to extract the component of phase due to the atmosphere, so the calculation of velocities of deformation of the land is better

    SMOS based high resolution soil moisture estimates for Desert locust preventive management

    Full text link
    This paper presents the first attempt to include soil moisture information from remote sensing in the tools available to desert locust managers. The soil moisture requirements were first assessed with the users. The main objectives of this paper are: i) to describe and validate the algorithms used to produce a soil moisture dataset at 1 km resolution relevant to desert locust management based on DisPATCh methodology applied to SMOS and ii) the development of an innovative approach to derive high-resolution (100 m) soil moisture products from Sentinel-1 in synergy with SMOS data. For the purpose of soil moisture validation, 4 soil moisture stations where installed in desert areas (one in each user country). The soil moisture 1 km product was thoroughly validated and its accuracy is amongst the best available soil moisture products. Current comparison with in-situ soil moisture stations shows good values of correlation (R>0.7R>0.7) and low RMSE (below 0.04 m3 m−3). The low number of acquisitions on wet dates has limited the development of the soil moisture 100 m product over the Users Areas. The Soil Moisture product at 1 km will be integrated into the national and global Desert Locust early warning systems in national locust centres and at DLIS-FAO, respectively

    Mass balance of the Greenland Ice Sheet from 1992 to 2018

    Get PDF
    In recent decades, the Greenland Ice Sheet has been a major contributor to global sea-level rise1,2, and it is expected to be so in the future3. Although increases in glacier flow4–6 and surface melting7–9 have been driven by oceanic10–12 and atmospheric13,14 warming, the degree and trajectory of today’s imbalance remain uncertain. Here we compare and combine 26 individual satellite measurements of changes in the ice sheet’s volume, flow and gravitational potential to produce a reconciled estimate of its mass balance. Although the ice sheet was close to a state of balance in the 1990s, annual losses have risen since then, peaking at 335 ± 62 billion tonnes per year in 2011. In all, Greenland lost 3,800 ± 339 billion tonnes of ice between 1992 and 2018, causing the mean sea level to rise by 10.6 ± 0.9 millimetres. Using three regional climate models, we show that reduced surface mass balance has driven 1,971 ± 555 billion tonnes (52%) of the ice loss owing to increased meltwater runoff. The remaining 1,827 ± 538 billion tonnes (48%) of ice loss was due to increased glacier discharge, which rose from 41 ± 37 billion tonnes per year in the 1990s to 87 ± 25 billion tonnes per year since then. Between 2013 and 2017, the total rate of ice loss slowed to 217 ± 32 billion tonnes per year, on average, as atmospheric circulation favoured cooler conditions15 and as ocean temperatures fell at the terminus of Jakobshavn Isbræ16. Cumulative ice losses from Greenland as a whole have been close to the IPCC’s predicted rates for their high-end climate warming scenario17, which forecast an additional 50 to 120 millimetres of global sea-level rise by 2100 when compared to their central estimate

    Atmosphere characterisation with SAR interferometry

    No full text
    The contribution of the atmosphere in SAR interferometry is not completely known. Therefore, the goal of the project is to characterise the atmosphere, i.e., to study the way it relates to interferograms. The analysis of the atmospheric parameters that have an inuence on interferometry will cause a better understanding of the atmosphere. One of the objectives is to determine the relationship between interferograms and the refractivity calculated on the Earth's surface, to evaluate whether variations or changes of refractivity involve a change in the interferograms. This work also deals with the analysis of the atmospheric distance of correlation. This distance indicates the maximum separation between two correlated points of the atmosphere. SAR di erential interferometry uses this parameter to extract the component of phase due to the atmosphere, so the calculation of velocities of deformation of the land is better

    Mass balance of the Greenland Ice Sheet from 1992 to 2018

    No full text
    The Greenland Ice Sheet has been a major contributor to global sea-level rise in recent decades1,2, and it is expected to continue to be so3. Although increases in glacier flow4,5,6 and surface melting7,8,9 have been driven by oceanic10,11,12 and atmospheric13,14 warming, the magnitude and trajectory of the ice sheet’s mass imbalance remain uncertain. Here we compare and combine 26 individual satellite measurements of changes in the ice sheet’s volume, flow and gravitational potential to produce a reconciled estimate of its mass balance. The ice sheet was close to a state of balance in the 1990s, but annual losses have risen since then, peaking at 345 ± 66 billion tonnes per year in 2011. In all, Greenland lost 3,902 ± 342 billion tonnes of ice between 1992 and 2018, causing the mean sea level to rise by 10.8 ± 0.9 millimetres. Using three regional climate models, we show that the reduced surface mass balance has driven 1,964 ± 565 billion tonnes (50.3 per cent) of the ice loss owing to increased meltwater runoff. The remaining 1,938 ± 541 billion tonnes (49.7 per cent) of ice loss was due to increased glacier dynamical imbalance, which rose from 46 ± 37 billion tonnes per year in the 1990s to 87 ± 25 billion tonnes per year since then. The total rate of ice loss slowed to 222 ± 30 billion tonnes per year between 2013 and 2017, on average, as atmospheric circulation favoured cooler conditions15 and ocean temperatures fell at the terminus of Jakobshavn Isbræ16. Cumulative ice losses from Greenland as a whole have been close to the rates predicted by the Intergovernmental Panel on Climate Change for their high-end climate warming scenario17, which forecast an additional 70 to 130 millimetres of global sea-level rise by 2100 compared with their central estimate

    Mass balance of the Greenland Ice Sheet from 1992 to 2018

    No full text
    In recent decades, the Greenland Ice Sheet has been a major contributor to global sea-level rise1,2, and it is expected to be so in the future3. Although increases in glacier flow4–6 and surface melting7–9 have been driven by oceanic10–12 and atmospheric13,14 warming, the degree and trajectory of today’s imbalance remain uncertain. Here we compare and combine 26 individual satellite measurements of changes in the ice sheet’s volume, flow and gravitational potential to produce a reconciled estimate of its mass balance. Although the ice sheet was close to a state of balance in the 1990s, annual losses have risen since then, peaking at 335 ± 62 billion tonnes per year in 2011. In all, Greenland lost 3,800 ± 339 billion tonnes of ice between 1992 and 2018, causing the mean sea level to rise by 10.6 ± 0.9 millimetres. Using three regional climate models, we show that reduced surface mass balance has driven 1,971 ± 555 billion tonnes (52 of the ice loss owing to increased meltwater runoff. The remaining 1,827 ± 538 billion tonnes (48 of ice loss was due to increased glacier discharge, which rose from 41 ± 37 billion tonnes per year in the 1990s to 87 ± 25 billion tonnes per year since then. Between 2013 and 2017, the total rate of ice loss slowed to 217 ± 32 billion tonnes per year, on average, as atmospheric circulation favoured cooler conditions15 and as ocean temperatures fell at the terminus of Jakobshavn Isbræ16. Cumulative ice losses from Greenland as a whole have been close to the IPCC’s predicted rates for their high-end climate warming scenario17, which forecast an additional 50 to 120 millimetres of global sea-level rise by 2100 when compared to their central estimate

    Mass balance of the Greenland Ice Sheet from 1992-2018

    No full text
    This dataset consists of the time series of mass change of the Greenland Ice Sheet and its contribution to global sea level between 1980 and 2018 derived from satellite measurements. The dataset presented here is a reconciled estimate of mass balance estimates from three independent satellite-based techniques - gravimetry, altimetry and input-output method - and its associated uncertainty. This dataset is part of the Ice Sheet Mass Balance Inter-comparison Exercise (IMBIE). The total mass change as well as the partition between surface and dynamics mass balance are provided in this dataset. This work is an outcome of the Ice Sheet Mass Balance Inter-Comparison Exercise (IMBIE) supported by the ESA Climate Change Initiative and the NASA Cryosphere Program. Andrew Shepherd was additionally supported by a Royal Society Wolfson Research Merit Award and the UK Natural Environment Research Council Centre for Polar Observation and Modelling (cpom30001)

    Antarctic and Greenland Ice Sheet mass balance 1992-2020 for IPCC AR6

    No full text
    This dataset contains rates of mass change and cumulative mass change and their associated uncertainty for the Antarctic Ice Sheet (in its entirety and split into West Antarctica, East Antarctica and the Antarctic Peninsula), the Greenland Ice Sheet, and their sum between 1992 and 2020. The data are reconciled estimates of mass balance from three independent satellite-based techniques: altimetry, gravimetry and input-output method. This dataset is part of the Ice Sheet Mass Balance Intercomparison Exercise (IMBIE). This work is an outcome of the Ice Sheet Mass Balance Inter-Comparison Exercise IMBIE) supported by the ESA Climate Change Initiative and the NASA Cryosphere Program. Andrew Shepherd was additionally supported by a Royal Society Wolfson Research Merit Award and the UK Natural Environment Research Council Centre for Polar Observation and Modelling (cpom30001)
    corecore